Thursday, November 18, 2010

Identifying Special Situations In Factoring

  • Difference of two squares
    • a2- b= (a + b)(a - b)
      • p- 64 = p2 - 82 = (p + 8)(p - 8)
      • 121 - y2 = 11- y 2 = (11 + y)(11- y)
      • x2 - 36y2 = x2 - (6y)2 = (x + 6y)(x - 6y)
  • Trinomial perfect squares
    • a+ 2ab + b= (a + b)(a + b) or (a + b)2
      • x2 + 6x + 9 = x2 + 2(3)x + 32 = (x + 3)2
      • x- 10x +25 = x- 2(5)x + 5= (x - 5)2 
      • x2 - 5x + 25/4 = x2- 2(5/2)x + (5/2) = (x - 5/2)2
    • a2 - 2ab + b2 = (a - b)(a - b) or (a - b) 
      • 32 + 2(3)(5) + 5=
      • 7+ 2(7)(2) + 2=
      • 122 + 2(12)(9) + 92 =
  • Difference of two cubes
    • a3 - b3
      • 3 - cube root 'em
      • 2 - square 'em
      • 1 - multiply and change
          • 8x3 + 27 = (2x)3 + (3)3 = (2x + 3) (4x2 + 6x + 9) 
          •  10x3 + 30 = (4x)3 + (5)3 = (5x + 5) (6x2 + 8x + 11)
          •  6x3 + 25 = (x)3 + (2)3 = (2x + 4) (5x2 + 4x + 10)
  • Sum of two cubes
    • a3 + b3 
      • 3 - cube root 'em
      • 2 - square 'em
      • 1 - multiply and change
        •  x3 + 64 = (x + 4)(x2
        •  (x + a)(x2 - ax + a2)
        •  (4a)3 + (1)3 = (4a + 1)(16a2 - 4a + 1- 4x + 16)
  • Binomial expansion
    • (a + b)3 = Use the pattern
    • (a + b)4 = 

Tuesday, November 9, 2010

End Behavior

Domain - x values
Range - y values referred to as f(x)

  • domain → +∞, range → +∞ (rises on the right)
  • domain → -∞, range → -∞ (falls on the left)
 
  • domain → -∞, range → +∞ (rises on the left)
  • domain → +∞, range → -∞ (falls on the right)

  • domain → +∞, range → +∞ (rises on the right)
  • domain → -∞, range → -∞ (falls on the left)


  • domain → +∞, range → -∞ (falls on the right)
  • domain → -∞, range → -∞ (falls on the left)



NAMING POYNOMIALS: 
**Degree:
0- constant
1- linear
2- quadratic
3- cubic
4- quartic
5- quintic



TERMS:                           ****Number of terms is always one less than the degree.
monomial
binomial
trinomial
quadranomial
poynomial