- Difference of two squares
- a2- b2 = (a + b)(a - b)
- p2 - 64 = p2 - 82 = (p + 8)(p - 8)
- 121 - y2 = 112 - y 2 = (11 + y)(11- y)
- x2 - 36y2 = x2 - (6y)2 = (x + 6y)(x - 6y)
- Trinomial perfect squares
- a2 + 2ab + b2 = (a + b)(a + b) or (a + b)2
- x2 + 6x + 9 = x2 + 2(3)x + 32 = (x + 3)2
- x2 - 10x +25 = x2 - 2(5)x + 52 = (x - 5)2
- x2 - 5x + 25/4 = x2- 2(5/2)x + (5/2)2 = (x - 5/2)2
- a2 - 2ab + b2 = (a - b)(a - b) or (a - b)
- 32 + 2(3)(5) + 52 =
- 72 + 2(7)(2) + 22 =
- 122 + 2(12)(9) + 92 =
- Difference of two cubes
- a3 - b3
- 3 - cube root 'em
- 2 - square 'em
- 1 - multiply and change
- 8x3 + 27 = (2x)3 + (3)3 = (2x + 3) (4x2 + 6x + 9)
- 10x3 + 30 = (4x)3 + (5)3 = (5x + 5) (6x2 + 8x + 11)
- 6x3 + 25 = (x)3 + (2)3 = (2x + 4) (5x2 + 4x + 10)
- Sum of two cubes
- a3 + b3
- 3 - cube root 'em
- 2 - square 'em
- 1 - multiply and change
- x3 + 64 = (x + 4)(x2
- (x + a)(x2 - ax + a2)
- (4a)3 + (1)3 = (4a + 1)(16a2 - 4a + 1- 4x + 16)
- Binomial expansion
- (a + b)3 = Use the pattern
- (a + b)4 =
Thursday, November 18, 2010
Identifying Special Situations In Factoring
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment